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ABSTRACT

We measured the drift mobility of O−2 impurity ions in Argon gas close to

the critical point for (151.5 < T < 157)K above Tc = 150.86K and in the

density range (0.2 < N < 14.0)atomsnm−3 around Nc = 8.08atomsnm−3.

The density–normalized zero–field mobility µ0N of the ions shows a deep

minimum as a function of N as T → T+
c . This anomalous reduction of µ0N

occurs at a density Nm ≈ 0.8Nc. We believe that this behavior is due to

the strong electrostriction exerted by the ion on the highly compressible gas.

By introducing suitable contributions to the effective ion radius R due to

large gas compressibility, the hydrodynamic Stokes formula µ0 = e/6πηR is

in good agreement with the experimental data.

KEY WORDS: electrostriction; hydrodynamic drag; ion drift mobility;

kinetic theory.
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1. INTRODUCTION

The motion of ions in fluids has been extensively studied to obtain infor-

mation about the interaction between ions and atoms. In low density gases

the ion–atom interaction potential can be determined from drift mobility

data by using kinetic theory [1], while the mobility of ions in liquids is deter-

mined by the microscopic behavior and structure of the host fluid and can

be described in terms of hydrodynamics [2].

The same attention has not been devoted to dense gases, where the den-

sity can be varied in a large interval so as to investigate the limits of applica-

bility of either the kinetic or hydrodynamic description of the ionic motion.

Moreover, there is a lack of investigations of the ion transport mechanisms

near the liquid–vapor critical point [3,4] where the transport coefficients show

an anomalous behavior due to critical fluctuations [5].

Positive ionic species (daughter ions in parent fluids) have been more

carefully studied than negative ones because the former are easily produced

by ionizing the medium. Their structure and transport properties are fairly

well known. Electrostriction exerted by the ion strong electric field on the

polarizable medium enhances the local density around the ion. The attrac-

tion strength increases with increasing the atomic polarizability, α, of the

host atoms and with decreasing temperature T and can be so strong that

the liquid may even locally solidify [6] or the ion can be surrounded by a

solvation cluster. In this case, the ion transport is primarily determined by

the hydrodynamic interaction of the large structure surrounding the ion with

the fluid and is independent of the ionic species.

On the other hand, impurity negative ions are not equally well known. A

very important species is O−2 because O2 is a very common impurity in gases

and ions are produced by electron attachment [7]. The O−2 mobility µ in dense

gases has been studied as a function of N in 4He at T = 77K [8,15] but in
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the neighborhood of the critical point only in Ne at T = 45K ≈ Tc + 0.6K

in an extended density range 0.1 ≤ N/Nc ≤ 1.7 [4], with Nc the critical

density. In Ne µ0N shows a complicated behavior. At first, µ0N shows a

broad maximum for N ≈ 6.0atomsnm−3. Then, it has a broad and shallow

miminum for N ≈ (12− 13) atomsnm−3 < Nc = 14.44atomsnm−3. Finally,

it increases linearly for N ≥ Nc saturating for N > 20.0atomsnm−3 to a

constant value twice as large as the low density value.

In neither papers [4,8] the observed dependence of µ0N on N was satis-

factorily explained. In the case of Ne [4] it was assumed that at high–N µ0

might be described by the hydrodynamic Stokes’s formula

µ0 =
e

6πηR
(1)

where η is the gas viscosity and R is the radius of the ion. Electrostric-

tion effects were taken into account by solving the Navier-Stokes equation

in presence of the spatial nonuniformities surrounding the ion [9] yielding

µ0 = e/6πηFR. The correction factor F ≈ 1 depends on N and T as well as

on the shape of the N and η profiles. FR can be considered as the effective

ion radius. In any case, the agreement with the experimental data is quite

poor.

One more unsolved question raised by the Ne–O−2 experiment [4] is the

absence of any anomalous behavior of µ0N for N ≈ Nc even though Tc was

approached quite closely ε = (T − Tc)/Tc ≈ 1.3 × 10−2. A similar absence

of anomalous behavior of µ0 was observed for 3He+ in 3He close to Tc [10],

where µ0 shows a smooth reduction of less than 50 % for ε ≥ 10−3 with the

maximum mobility defect occuring for N ≈ 0.9Nc.

On one hand, the Nernst–Einstein–Townsend relationship between µ0 and

the diffusion coefficient D = (kBT/e)µ0 predicts an anomalous reduction of

µ0 at the critical point due to the anomalous behavior of the diffusion coef-

ficient [5] but there is no experimental evidence [4,10]. On the other hand,
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the experiments seem to confirm the theoretical prediction of Watanabe [11].

In this theory heavy ions, interacting with the atoms of the medium through

a contact potential, should not be elastically scattered off long–wavelength

fluctuations. Ions are not coupled to critical fluctuations because the rele-

vant length scales (the correlation length ξ of fluctuations and the thermal

wavelength of ions λT ≈ 0.02nm) are too different. Moreover, the ionic ther-

mal velocity is such that the time spent going through a fluctuation is much

less than the fluctuation decay time so that the dissipative properties of the

fluctuations do not influence µ0.

It has been proposed recently [12] that the quantum nature of the inter-

action between the gas atoms and the additional electron in the O−2 ion must

be taken into account to describe structure and mobility of the ion. The elec-

tron is weakly bound in the ion and its orbit is extended in space. The com-

petition between short–range repulsive exchange forces and the long–range

polarization ion–atom interaction gives origin to a hollow cavity around the

ion surrounded by a region of enhanced gas density. The strength of this

enhancement is related to the polarizability of the gas atoms and to the gas

compressibility χT and is very relevant close to the critical point.

This model [12] describes well µ0 in the high–T, low–N case of He gas

[8] where α is so low that only an empty void surrounds the ion. However,

it fails in the case of the high–N, low–T Ne case [7] where the strong den-

sity enhancement around the ion cannot be neglected. The experimental

data are reproduced almost quantitatively for high densities (N > Nc) by

assuming the validity of the Stokes equation (1), by taking the position of

the maximum of the density profile as the hydrodynamic ion radius R, and

by using the viscosity η evaluated at the maximum density. However, the

data for N ≤ Nc are not even qualitatively reproduced. We have therefore

carried out measurements of the mobility of O−2 ions in Ar to check some of
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the issues raised in previous experiments and models. We have chosen Ar

because polarization forces are very strong and no hollow cavity is expected

to surround the ion. Moreover, the atomic polarizability of Argon is very

large (α = 1.83 × 10−40 Cm2/V ) and the density enhancement around the

ion should be very important. Therefore, Ar should represent a valid test of

the predictions of Watanabe. We will show that µ0N of O−2 ions in Ar gas is

strongly affected by the critical point trough the formation of a thick layer

of correlated fluid around the ion. Preliminary results have been recently

published [13].

2. EXPERIMENTAL DETAILS

We used the same pulsed electron photoinjection technique [14] exploited for

mobility measurements of O−2 ions in Ne and He [4,15]. We refer to literature

for details. The cell containing the gas (Ar “N60”) is thermoregulated within

±0.01K. Thermal gradients are estimated to be < 2K/m. T is measured

with a calibrated Pt resistor. The absolute value of T is known within±0.3K.

N is calculated from the pressure P and T by means of the equation of state

of Gosman et al.[16].

Two parallel–plate, gold–plated brass electrodes in the cell are separated

by a distance d = 10mm. A short U.V. light pulse impinging on the pho-

tocathode extracts electrons that are captured by O2 impurities to form O−2

ions. The current induced by the ion motion towards the anode is integrated

by a RC network, amplified, and recorded by a digital scope. The signal

waveform is processed by a P.C. to obtain the ionic drift time τi. µ is calcu-

lated from the relationship µ = d2/τiV, where V is the applied voltage. The

relative accuracy of µ is estimated to be ≈ 5%.
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3. EXPERIMENTAL RESULTS AND DISCUSSION

For electric fields up to 0.3MV/m, and for every T and N, µ is practically

field independent, equal to its zero–field value µ0, as shown in Fig. 1, because
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Figure 1: Electric field dependence of the O−2 ion mobility µ for N =
5.83 atomsnm−3 at T = 154K.

the ions are near thermal equilibrium with the gas atoms. In Figs. 2 and
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Figure 2: Density–normalized zero–field mobility µ0N as a function of N for
T = 180K (closed dots) and for T = 157K (open squares).

3 µ0N is shown as a function of N for several values of T. As T → Tc

the behavior of µ0N changes greatly. For T ≈ 180K � Tc, µ0N increases

linearly with N. This behavior is very similar to that shown in He [8,15] and

in Ne [4,15]. For T = 157K ≈ Tc+ 6K (ε ≈ 4×10−2) the slope changes sign

and µ0N decrases linearly with N. For T = 154K (ε ≈ 2× 10−2) µ0N has a

broad minimum in the density range (5.5 < N < 8) × atomsnm−3. Finally,
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Figure 3: µ0N as a function of N for T = 154K (open squares) and for T =
151.5K (closed dots). Curve a is the prediction of Eq.(1). Curve b is the prediction
of Eq.(1) with R given by Eq.(2). The solid curve is the prediction of Eq.(1) with
R given by Eq. (4).

for T = 151.5 ≈ Tc + 0.6K (ε ≈ 4 × 10−3) µ0N has a very deep minimum

located at N = Nm ≈ 6.5atomsnm−3. It is evident that the mobility drop

for T → Tc has to be connected with the approach to the critical point where

both χT and η diverge, but it is surprising that the strongest effect appears

for N < Nc.

Owing to the relationship among µ0, diffusion coefficient D, and drag

coefficient of a sphere of radius R and charge e, D = kBT/6πηR = (kBT/e)µ0,

known to be valid even for microscopic particles [17], µ0 data could be used

to determine η. However, the determination of the anomaly of η in binary

mixtures at the critical point from measurements of the diffusion coefficient

of Brownian particles yields controversial results according to the degree of

interaction of the particles with the liquid [18]. To obtain agreement with

standard viscometric measurements it has to be assumed that the particles

are surrounded by a layer of correlated fluid enhancing their radius. The

layer thickness is δ ∝ ξ and depends on the interaction of the particles with

the fluid.

In the present case there is a strong interaction between the ion and the

highly polarizable medium and electrostriction plays an important role. We
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believe that µ0 is more sensitive to the divergence of χT that determines the

electrostriction strength rather than to the weak divergence of η [19]. Thus,
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Figure 4: Hydrodynamic ion radius R calculated from from µ0N by means of Eq.
(1) for T = 151.5K.

by assuming the validity of Eq. (1), the hydrodynamic ion radius R is ob-

tained by inverting the µ0N data. We used η values as function of N found in

literature [20]. In Fig. 4 we show R as a function of N for T = 151.5K. It has

a sharp maximum for Nm where µ0N is minimum. For N ≈ 3.0atomsnm−3,

R ≈ 0.5nm close to the value R1 ≈ 0.46nm of a complete solvation shell

of Ar atoms surrounding the ion (the Ar–Ar interaction hard–core radius is

σA = 0.34nm and that of the O−2 –Ar interaction can be estimated to be

σO ≈ 0.29nm [21]). For N ≈ 14.0atomsnm−3 R ≈ 0.76nm close to the

value R2 ≈ 0.82nm corresponding to two completely developed solvation
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shells.

In order to explain the sharp maximum of R for N = Nm we assume

that a correlated fluid layer is dragged along by the ion thus increasing its

effective radius. In the critical region of Ar the correlation length can be

cast in the form ξ = L [S (0)]1/2 where L ≈ 0.316nm is the short–range

correlation length and S(0) = NkBTχT is the long–wavelength limit of the

static structure factor. We therefore put

R = (a0 + a1N) + a2

√
S (0) (2)

where a0, a1, and a2 are fitting parameters. The linear part (a0 + a1N)

interpolates between the radii of one and two solvation shells, while the term

∝
√
S(0) is relevant close to the critical point and takes into account the

thickness of the correlated fluid layer. By using Eq.(2) we obtain curve b in

Fig. 2. The µ0N minimum occurs for N = Nc, where S(0) is maximum, and

not for N = Nm. The reason of the discrepancy is due to the fact that S(0)

is a thermodynamic property of the unperturbed gas and we have not yet

considered the perturbation induced by electrostriction.

This enhances the local density Nr around the ion (and, hence, also the

local viscosity ηr ≡ η(Nr)) so that Nr takes on the value Nc at a given

distance r from the ion only if N < Nc, where N is the unperturbed gas

density. At the same distance the local value of the static structure factor

Sr ≡ S(0, N = Nr) is obviously maximum. This fact suggests that the fluid

properties determining the ion transport are not those of the unperturbed

fluid. The density profile is calculated according to the electrostriction model

[6] by numerically inverting the following equation

−V (r) = K2 (Nr)

Nr∫
N

(
∂P

∂N

)
T

d lnN (3)

where V (r) is the ion–atom interaction potential, and K is the dielectric

constant of the gas. A typical density profile is shown in Fig. 5 [13]. For
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Figure 5: Electrostriction induced density profile for N = 6 atomsnm−3 and
T = 151.5K. A 12–6–4 potential with a hard–core radius σ = 0.29nm and a well
depth of 1.57× 10−20 J has been used.

a given N, Sr differs from S(0) and is maximum at the distance r where

Nr = Nc. The optimum value r? of r has been determined by imposing that

Sr is maximum for N = Nm, yielding r? = 1.85nm. Accordingly, in Eq. (1)

we used the local value of η, evaluated at the same distance from the ion

r? = 1.85nm for every N and adjusted the parameters in Eq. (2) so as to fit

the data, yielding

R = 0.475 + 1.143 × 10−3N + 0.066
√
Sr (4)

with R in nm and N in units of atomsnm−3. The results of this model are

shown as the solid line in Fig. 2. The agreement of this modified Stokes for-

mula with the data is very good, even for quite low N (N ≈ 4.0atomsnm−3).

In the same Fig. 2 we also show the results of Eq. (1) (curve a) obtained

by using the unperturbed gas viscosity and an effective radius including only

the linear contribution R = 0.475+1.143×10−3N. The striking disagremeent

with the data puts into clear evidence the relevance of the contribution of

the layer of correlated fluid to the effective ionic radius and the importance

of using local values for the fluid properties. As seen in Fig. 4, it is always

R < r? the distance where the fluid properties must be evaluated. This

casts some doubts on the simple picture of a solid–like sphere of radius R,
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where no–slip boundary conditions apply, since R and η in Eq. (1) are

determined by the properties of the unperturbed fluid at distances r? > R. In

any case, the agreement of the electrostricton model with the data supports

the conclusion that µ0 is more sensitive to χT than to η, because of the strong

ion–atom polarization interaction and of the critical divergence of χT , much

stronger than that of η. These results, moreover, indicate that the use of a

contact potential in the theory of Watanabe is a very bad approximation.

Finally, we point out that the hydrodynamic description of the ionic

mobility fails for N ≤ 4.0atomsnm−3, where it is evident that a differ-

ent transport mechanism is active. A more detailed theoretical analysis of

the momentum transfer mechanisms in the transition regime from kinetics–

to hydrodynamics is still needed to fully describe the density dependence of

the ion mobility.
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